First-principles multiway spectral partitioning of graphs
نویسندگان
چکیده
We consider the minimum-cut partitioning of a graph into more than two parts using spectral methods. While there exist well-established spectral algorithms for this problem that give good results, they have traditionally not been well motivated. Rather than being derived from first principles by minimizing graph cuts, they are typically presented without direct derivation and then proved after the fact to work. In this paper, we take a contrasting approach in which we start with a matrix formulation of the minimum cut problem and then show, via a relaxed optimization, how it can be mapped onto a spectral embedding defined by the leading eigenvectors of the graph Laplacian. The end result is an algorithm that is similar in spirit to, but different in detail from, previous spectral partitioning approaches. In tests of the algorithm we find that it outperforms previous approaches on certain particularly difficult partitioning problems.
منابع مشابه
Multiway partitioning via geometric embeddings, orderings, and dynamic programming
AbstructThis paper presents effective algorithms for multiway partitioning. Confirming ideas originally due to Hall, we demonstrate that geometric embeddings of the circuit netlist can lead to high-quality k-way partitionings. The netlist embeddings are derived via the computation of d eigenvectors of the Laplacian for a graph representation of the netlist. As Hall did not specify how to partit...
متن کاملMin-Max Multiway Cut
We propose the Min-max multiway cut problem, a variant of the traditional Multiway cut problem, but with the goal of minimizing the maximum capacity (rather than the sum or average capacity) leaving a part of the partition. The problem is motivated by data partitioning in Peer-to-Peer networks. The min-max objective function forces the solution not to overload any given terminal, and hence may ...
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملPartitioning transition relations efficiently and automatically
Multiway Decision Graphs (MDGs) have been recently proposed as an eecient representation of Extended Finite State Machines (EFSMs), suitable for automatic hardware veriication of Register Transfer Level (RTL) designs 7, 14]. We report here on the results of our research into automatic partitioning of state transition relations described using MDGs. The objective is to achieve the maximum possib...
متن کاملSpectral Partitioning Works: Planar Graphs and Finite Element Meshes
Spectral partitioning methods use the Fiedler vector—the eigenvector of the second-smallest eigenvalue of the Laplacian matrix—to find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on bounded-degree pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Complex Networks
دوره 2 شماره
صفحات -
تاریخ انتشار 2014